FPGA Based Longitudinal and Lateral Controller Implementation for a Small UAV
نویسنده
چکیده
This paper presents implementation of attitude controller for a small UAV using field programmable gate array (FPGA). Due to the small size constrain a miniature more compact and computationally extensive; autopilot platform is needed for such systems. More over UAV autopilot has to deal with extremely adverse situations in the shortest possible time, while accomplishing its mission. FPGAs in the recent past have rendered themselves as fast, parallel, real time, processing devices in a compact size. This work utilizes this fact and implements different attitude controllers for a small UAV in FPGA, using its parallel processing capabilities. Attitude controller is designed in MATLAB/Simulink environment. The discrete version of this controller is implemented using pipelining followed by retiming, to reduce the critical path and thereby clock period of the controller datapath. Pipelined, retimed, parallel PID controller implementation is done using rapidprototyping and testing efficient development tool of “system generator”, which has been developed by Xilinx for FPGA implementation. The improved timing performance enables the controller to react abruptly to any changes made to the attitudes of UAV. Keywords—Field Programmable gate array (FPGA), Hardware descriptive Language (HDL), PID, Pipelining, Retiming, Xilinx System Generator.
منابع مشابه
Model Predictive Controller Design for a Novel Moving Mass Controlled Bi-rotor UAV
This paper presents design and implementation of Model Based Predictive Controller (MPC) for a novel Bi-Rotor Moving Mass Controlled (MMC) Unmanned Aerial Vehicle (UAV). Due to the strict constrained control inputs in this type of UAV, it is necessary to take into account the constrained controller design and un-constrained control methods are not applicable. MPC controller which is designed ba...
متن کاملField Programmable Gate Array Implementation of Active Control Laws for Multi-mode Vibration Damping
This paper investigate the possibility and effectiveness of multi-mode vibration control of a plate through real-time FPGA (Field Programmable Gate Array) implementation. This type of embedded system offers true parallel and high throughput computation abilities. The control object is an aluminum panel, clamped to a Perspex box’s upper side. Two types of control laws are studied. The first belo...
متن کاملAdaptive Neural Network Controller Design for Blended-wing Uav with Complex Damage
This paper presents neural network controller design for complex damage to a blended wing UAV (Unmanned Aerial Vehicle): partial loss of main wing and vertical tail. Longitudinal/lateral axis instability and the change of flight dynamics is investigated via numerical simulation. Based on this, neural network based adaptive controller combined with feedback linearization is designed in order to ...
متن کاملDesigning and implementation of an unmanned aerial vehicle for inspection of electricity distribution networks
One of the most crucial elements of each country is electricity distribution networks (EDN). Awareness of accidents in EDN could be very important in the conservation and utilization of them. The accurate and periodic inspections can provide a good service to subscribers. The goal of this project is to fabricate a quad rotor, which can do an accurate and a periodic inspection. The design and im...
متن کاملDesign of Longitudinal Motion Controller of a Small Unmanned Aerial Vehicle
The need for autonomous Unmanned Aerial Vehicles (UAVs) is very interesting nowadays. Autonomous UAVs provide the possibility of performing tasks and missions that are currently hazardous or can cost humans or money, enable autonomous search, persistent combat intelligence, surveillance and reconnaissance (ISR), and many other applications. This paper presents an overview of autopilot design wi...
متن کامل